

HIDROCICLONADO Y ESCURRIDO DE ESTÉRILES COMO ALTERNATIVA A LA FILTRACIÓN CONVENCIONAL

TRATAMIENTO DE ESTÉRILES EN INSTALACIONES MINERAS

- * Emplazamiento final de los estériles.
- * Optimización de la recuperación del agua.

, sslMC

PLANTA DE SULFUROS DE LA DIVISIÓN MANTOS BLANCOS

(Anglo American Chile Ltda.)

OBJETIVO

optimización de los costes operativos de la filtración en la planta de tratamiento de estériles

Circuito de clasificación (hidrociclones)

Espesamiento de finos (tanques espesadores)

Filtración de gruesos (filtros horizontales)

Circuito de Clasificación

Batería de hidrociclones AMP DEP-6-G4

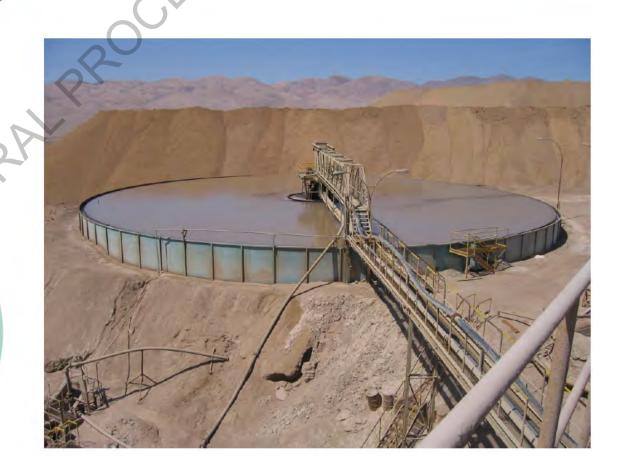
4+2 Hidrociclones PP050102

 $\theta = 50-55\%$

 d_{50} = 50-60 μm

Rebose (overflow): $C_w = 24-26\%$

Hundido (underflow): C_w=65-67%



Espesamiento de finos

Larox (Ø 67 m)

Eimco (Ø 44 m) Dorr Oliver (Ø 44 m)

Filtración de gruesos

Tres filtros horizontales de vacío

Superficie: 100 m² c/u

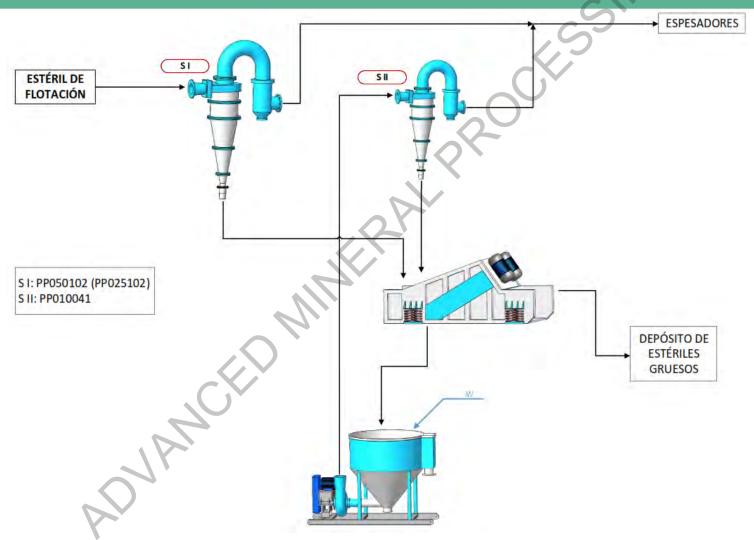
Torta: 17% [contenido agua]

OPTIMIZACIÓN ETAPA DE FILTRACIÓN DE ESTÉRILES: Estudio a escala piloto

PROPUESTA DE MEJORA: HIDROCICLONADO + ESCURRIDO

1ª ETAPA (SI)

- Clasificación mediante hidrociclonado
 - Hidrociclones existentes modificados PP050102 (Ø 500mm) [DEP-6-G4]
 - Hidrociclón PP025102 (Ø 250mm)


2ª ETAPA (SII)

- Planta Compacta de Hidrociclonado y Escurrido [MUE 10/2-50.8-22]
 - Hidrociclones PP010041 (Ø 100mm)
 - Grupo de bombeo GB-22 + Bomba centrífuga 3/2 MAR
 - Escurridor vibrante VF-22

OPTIMIZACIÓN ETAPA DE FILTRACIÓN DE ESTÉRILES: Estudio a escala piloto

OPTIMIZACIÓN ETAPA DE FILTRACIÓN DE ESTÉRILES: Estudio a escala piloto

1ª ETAPA DE HIDROCICLONADO

- DEP-6-G4
- 4 hidrociclones en operación
- PP050102 V
- Ø 500 mm

2 ª ETAPA DE HIDROCICLONADO

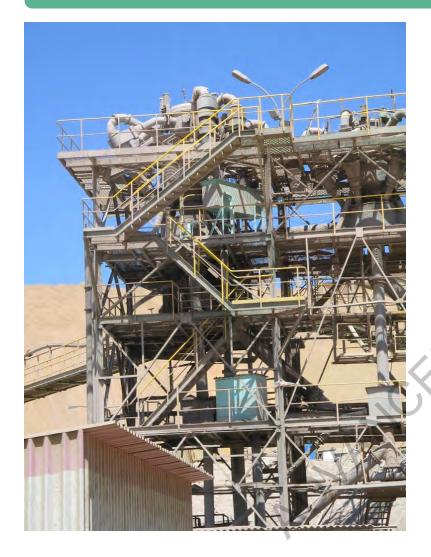
- DEF-38-G4
- 38 hidrociclones en operación
- PP010041 II
- Ø 100 mm

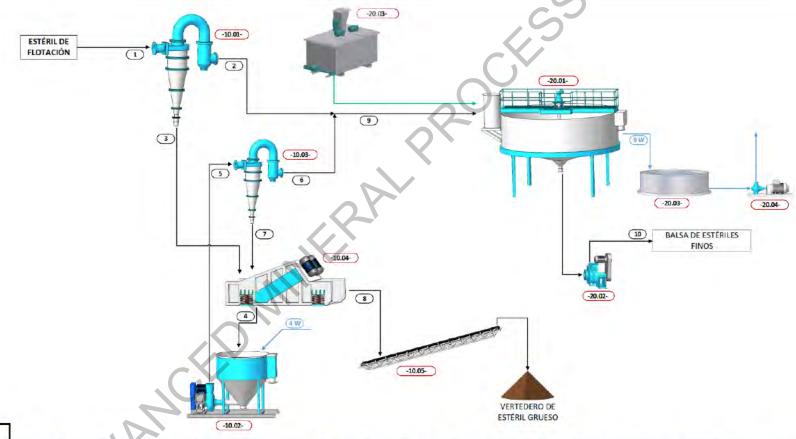
ETAPA DE ESCURRIDO

- 2 escurridores vibrantes
- VF-86
- S= 11,2 m²
- 38 kW

GRUPO DE BOMBEO

- 1 GB 86
- Bomba 10/8
- 110 kW





(Kg/dm³)	2,58											
FLOW	1	2	3	4	4 W	5	6	7	8	9	9 W	10
Т	526,00	124,24	401,76	517,37	110000	517,37	44,32	473,05	357,44	168,56	I the same	168,56
M	873,00	500,64	372,36	720,42	757,78	1478,20	891,50	586,70	238,64	1392,14	1201,49	190,65
J	603	248	1079	718		350	50	806	1498	121		334
Cw	44,0 %	21,5 %	65,0 %	49,9 %		28,8 %	4,8 %	54,0 %	78,1 %	11,3 %		57,4 %

OPTIMIZACIÓN ETAPA DE FILTRACIÓN DE ESTÉRILES: Ventajas

- *Reducción del tamaño de las instalaciones.
- * Menor consumo energético.
- * Disminución de los elementos fungibles (medios de filtración).
- * Mayor simplicidad operativa.

Comparativo de los costes de operación								
	Coste energía (kUS\$/año)	Coste Operación y Mantenimiento (kUS\$/año)						
3 Filtros banda horizontal (100 m² c/u)	200	315						
3 Plantas compactas MUE 10/38-200.110-86	122	117						


OPTIMIZACIÓN ETAPA DE FILTRACIÓN DE ESTÉRILES: Conclusiones

- 1. La acción conjunta de hidrociclones, con la configuración y geometría adecuada, junto con la deshidratación proporcionada por escurridores vibrantes, puede permitir la sustitución de filtros horizontales de vacío, con un menor coste operativo.
- 2. El tratamiento de estériles mediante "Hidro-escurridores" pueden ser una alternativa a la filtración, especialmente en plantas concentradores de tamaño medio, pudiéndose tratar la fracción de tamaño superior a 30-45 micras, que puede llegar a representar del orden del 60-70% de la masa total de estériles.
- 3. El cambio de los hidrociclones de la batería primaria por otros de menor diámetro, con el objetivo de reducir el tamaño de corte y alcanzar un reparto 80/20 (hundido/rebose), podría aumentar la cantidad de estériles a tratar mediante "Hidro-escurrido".

HIDROCICLONADO Y ESCURRIDO DE ESTÉRILES COMO ALTERNATIVA A LA FILTRACIÓN CONVENCIONAL

MUCHAS GRACIAS Francisco Rojas Benjumea

ADVANCED MINERAL PROCESSING, S.L.

www.ampmineral.com